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Abstract

A comprehensive set of equations is derived for correlations and spectra
of atmospheric turbulence, useful for wave propagation calculations and
other applications. Three basic turbulence models are considered: the Gaus-
sian, von Kármán, and Kolmogorov models. Two extended forms of the
von Kármán model are also described: the Mann model for a shear-driven
atmospheric surface layer, and the Hunt/Graham/Wilson model for a con-
vective boundary layer. A new method for synthesizing random fields from
an inhomogeneous spectral model, called the generalized random-phase
method, is described and applied to the various turbulence models.
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1. Introduction

Atmospheric turbulence interferes with the coherent propagation of acous-
tic and electromagnetic waves. As a result, turbulence becomes important
in many problems involving detection, identification, and location of tar-
gets. Statistical models of turbulence, which are useful for incorporation
into wave propagation and scattering calculations, are the subject of this
report.

The report is intended mainly as a reference document: it brings together
a comprehensive collection of results from turbulence spectral modeling
relevant to wave propagation calculations. Many of the results have not
been previously published, or are scattered among diverse publications.
A secondary purpose of the report is to provide a unified and systematic
derivation of several statistical turbulence models, as well as methods for
synthesizing random fields from these models. The report should be useful
to readers having only modest familiarity with turbulence theory (for ex-
ample, readers whose specialty is wave propagation) by providing a con-
densed tutorial on turbulence spectral theory and modeling.

The motivation for assembling these results is the strong interest that has
developed during the past several years, particularly in acoustics, in incor-
porating realistic turbulence models into scattering calculations. This inter-
est has been driven by the developing capability of computers and software
to accurately calculate atmospheric turbulence effects on sound fields. An
important example application is the scattering of sound into an acoustic
shadow zone.∗ Shadow zones are created by topographic features (such as
hills) or by refraction. Recent research (Gilbert et al., 1990, Juvé et al., 1994,
Gilbert et al., 1996) has demonstrated that most sound energy reaching a re-
ceiver in an acoustic shadow is scattered there by turbulence, and that the
simple, Gaussian models favored in the past do not describe the scattered
signal levels well. Accurate calculation of sound fields therefore requires
realistic turbulence models.

By turbulence model, I mean a set of equations or an algorithm that mimics
statistical or dynamical properties of turbulence. Because of the complex
nature of turbulence, there is no perfect model. Therefore, the usual ap-
proach to studying turbulence is to try to develop approximate models for
∗In analogy to an optical shadow, an acoustic shadow zone is defined as a region not di-

rectly penetrated by rays of sound.
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the particular properties of interest. This report is limited to second-order,
two-point statistics of turbulence: correlation functions, spectra, and struc-
ture functions. These are the statistics normally needed to calculate mean
sound levels in acoustic shadow zones, and to calculate signal coherence
at an array of sensors. Some applications, such as the modeling of sound
level fluctuations in shadow zones, require turbulence statistics higher than
second order; however, such higher order models are beyond the scope of
this report.

In this report I develop second-order statistical model equations by using
a prescribed equation for the specific energy spectrum∗ as a starting point.
I chose this approach because it leads to well-determined and straightfor-
ward modeling procedures. Alternative procedures for developing turbu-
lence models are however possible: for example, one can define models by
starting from correlation functions. A disadvantage with this alternative is
that it can lead to confusion when vector fields are involved. Furthermore,
I show in this report how the energy spectral approach can save some work
in deriving model results needed for scattering, particularly for an impor-
tant quantity called the two-dimensional (2D) correlation function.

Regardless of how the turbulence model is defined, the fundamental diffi-
culty in modeling second-order turbulence statistics lies in realistic model-
ing of the energy subrange. This part of the turbulence spectrum, consisting
of the largest eddies in the flow, is directly affected by the instability driv-
ing the turbulence. Since instability mechanisms that drive turbulence (pri-
marily wind shear and density gradients) are inherently directional forces,
statistics of the energy subrange eddies are anisotropic (dependent on di-
rection). Statistics of the energy subrange are also highly flow dependent.
The anisotropy and nonuniversality hamper development of universal pa-
rameterizations for energy subrange statistics.

Eventually the energy subrange eddies break down into the smaller eddies
of the inertial subrange, and the “memory” of the instability mechanism that
created the turbulence is lost. As a result, the inertial subrange is isotropic
and amenable to universal parameterizations. Using Kolmogorov’s (1941)
scaling hypotheses, it is not difficult to develop realistic turbulence models
for the inertial subrange.

The inertial subrange eddies continue to break down into smaller ones, un-
til they are so small that molecular dissipation processes convert the tur-
bulent energy to heat. This transition occurs at eddy sizes of 1 to 10 mm
in the atmosphere. These small, dissipating eddies make up the dissipation

∗Specific here means per unit mass. For example, the specific kinetic energy of a moving
parcel of fluid is υ2/2, where υ is the speed of the parcel.
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subrange. Modeling of the dissipation subrange is not considered in this re-
port, because sound waves that are useful for long-range detection have
characteristic wavelengths that are much larger than the dissipation sub-
range eddies and therefore play an insignificant role in scattering.

I consider several turbulence models, which capture the turbulence fea-
tures discussed above with varying degrees of realism:

1. Isotropic Gaussian model. This is the simplest reasonable model from
an analytical standpoint. All the desired results are easily obtained
in closed form. The disadvantage of the Gaussian model is that it is
unrealistic for the inertial subrange. The energy in high-Reynolds-
number turbulence, such as the atmosphere, is distributed over a
broad range of spatial scales, although in the Gaussian model all the
energy is concentrated at a single length scale. The Gaussian model is
discussed in this report mainly for reference purposes.∗

2. Von Kármán model. This model has a realistic inertial subrange. The
energy subrange, although mathematically well behaved, is some-
what unrealistic since it is isotropic. All second-order statistics of in-
terest can be obtained analytically, although the mathematical manip-
ulations become rather complicated.

3. Kolmogorov model. This model is intended only for the inertial sub-
range, for which it is both realistic and simple. One drawback, in
comparison to the von Kármán model, is that many of the equa-
tions diverge in the energy subrange. Therefore some care must be
taken in applying the Kolmogorov model. All results for the Kol-
mogorov model actually can be obtained from calculations of high-
wavenumber approximations to the von Kármán model, as well as
by other methods. The Kolmogorov model can be expressed entirely
in terms of a single parameter, called the structure-function parame-
ter. This feature has proven convenient in previous experimental and
theoretical studies of scattering.

4. HGW (Hunt/Graham/Wilson) model. Hunt and Graham (1978,
1984) developed a method to determine the modification of free-
space spectra due to blocking (damping of the vertical velocity) at
a plane boundary such as the ground. The boundary was modeled
as a flat, free-slip surface. In previous work (Wilson, 1997c), I applied
the Hunt and Graham method (with the von Kármán model used for

∗One advantage of the Gaussian model is that it is particularly easy to formulate an
anisotropic version. As a result, it may work reasonably well for the energy subrange in
some situations (Wilson & Thomson, 1994). In this report, however, I consider only the
isotropic Gaussian model.
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the free-space spectra) to the atmospheric, convective boundary layer
(CBL). The HGW model is an example of a vertically inhomogeneous
(height-dependent) model. A disadvantage of the HGW model is that
many statistics of interest must be obtained by numerical integration.

5. Mann model. Mann (1994) developed a theory for the distortion of
turbulence by a constant wind shear. The theory agrees quite well
with spectra recorded near the ground on a windy day. Like the HGW
model, the Mann model requires numerical integrations to compute
most statistics needed for wave propagation studies.

Models 1 to 3 actually take on slightly different forms, depending on
whether the turbulent field of interest is scalar or vector. Models 4 and 5
apply only to turbulent velocity fluctuations (a vector field).

For each turbulence model, several statistical functions of interest must be
derived:

1. 1D correlations and spectra. Although these are actually of little in-
trinsic interest in wave propagation calculations, it is typical of field
measurements that the only turbulence data available are time series
recorded by fixed sensors on a vertical tower. The time series can be
converted to 1D spatial series via Taylor’s hypothesis (∆x = V∆t,
where V is the wind speed, and ∆x and ∆t are the increments in
space and time, respectively). From calculations of spectra and/or
correlations from the 1D spatial series, the parameters for the turbu-
lence model can be determined. Hence 1D spectra and correlations
are indirectly valuable.

2. 2D correlation function. This function is needed for computing the
mutual coherence function, which describes the coherence between
the signals at spatially separated microphones. The coherence be-
tween the microphones is needed for calculating the effects of tur-
bulence on sensor arrays (Wilson, 1997a).

3. 2D spectrum. Numerical calculations of acoustic propagation
through turbulence are frequently performed in a 2D plane in order
to alleviate the demand on computational resources. The plane used
in the calculation is normally a vertical one, with the nominal direc-
tion of propagation being the horizontal coordinate. A 2D turbulence
spectrum in the plane of calculation is needed to “synthesize” a ran-
dom field having the same second-order statistics as the turbulence
model.

4. 3D spectrum. Most treatments of volume scattering require the 3D
spectrum for calculations of the scattered field. For homogeneous
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turbulence, the 3D spectrum can be used to synthesize a 3D random
field.

5. 2D cross spectrum. This is the generalization of the 3D spectrum
to vertically inhomogeneous turbulence. The 2D cross spectrum is
a spectrum with regard to the horizontal variables, and a correla-
tion function in the vertical direction. Inhomogeneous, 3D random
fields can be synthesized from the 2D cross spectrum by a method
discussed in section 3.

This report is structured as follows. Following a brief exposition of some of
the fundamental concepts and equations involved in modeling turbulence
spectra (sect. 2), I discuss a method for synthesizing a random turbulent
field from a prescribed homogeneous or inhomogeneous spectrum (sect.
3). The next five sections each discuss one of the five turbulence models
mentioned above. Section 9 gives some examples of synthesized random
fields, generated by the various turbulence models.

5



2. General Principles

This section provides some general background on modeling turbulence
correlations and spectra.

2.1 Correlation and 3D Spectral Functions

Let us define the correlation function of a random, scalar field s as

R
(
x1, x

′
1, x2, x

′
2, x3, x

′
3

)
=
〈
s (x1, x2, x3) s

(
x′1, x

′
2, x
′
3

)〉
, (1)

where the angle brackets indicate ensemble averaging. If the field is homo-
geneous, by definition the correlation function depends only on the separa-
tions between the measurement points, ri = x′i− xi. Then we can make the
simplification

R (r1, r2, r3) = R
(
x1, x

′
1, x2, x

′
2, x3, x

′
3

)
. (2)

If the field is also isotropic (i.e., its statistics are independent of coordinate
rotations), then the correlation function of a scalar depends only on the
radial distance r between the measurement points, where r2 = r2

1 + r2
2 +

r2
3. For a homogeneous, isotropic scalar field, one can therefore define a

normalized correlation function h (r) such that

σ2h (r) = R (r1, r2, r3) . (3)

The 3D spectral density function Φ (κ1, κ2, κ3) (spectrum, for short) can be
defined as the 3D Fourier transform of the correlation function:

Φ (κ1, κ2, κ3) =
1

8π3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

R (r1, r2, r3) (4)

× exp [−i (κ1r1 + κ2r2 + κ3r3)] dr1 dr2 dr3,

R (r1, r2, r3) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φ (κ1, κ2, κ3) (5)

× exp [i (κ1r1 + κ2r2 + κ3r3)] dκ1 dκ2 dκ3,

where κi is the wavenumber in the direction of ri.

Vector quantities, such as turbulent velocity fluctuations, are handled sim-
ilarly to scalars. However, the situation becomes somewhat more compli-
cated for vectors, since three directions are involved in a given spectrum
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or correlation: the direction of the displacement and the orientations of
the two velocity components. (Only the direction of the displacement is
involved in the scalar case.) Let us define the correlation function of a ho-
mogeneous vector field as

Rij (r1, r2, r3) =
〈
ui (x1, x2, x3)uj

(
x′1, x

′
2, x
′
3

)〉
, (6)

where the subscripts i and j indicate the velocity component. Note that Rij
is a tensor quantity, having nine components. We can define the spectral
density by taking Fourier transforms in a manner analogous to the scalar
case.

Unlike scalar fields, vector fields (even if isotropic) do not have the prop-
erty that the correlation functions depend only on r. However, it is true for
an isotropic vector field thatR11 (r, 0, 0) = R22 (0, r, 0) = R33 (0, 0, r). Hence
for vectors we define the correlation function f (r) by the relationship

σ2f (r) = R11 (r, 0, 0) , etc. (7)

In this case, f (r) is referred to as the normalized longitudinal correlation
function, so that it can be distinguished from correlations such asR22 (r, 0, 0)
and R33 (0, r, 0), where the velocity components and displacement are per-
pendicular to each other. Let us define a normalized lateral correlation func-
tion g (r) such that

σ2g (r) = R22 (r, 0, 0) , etc. (8)

A further complication when dealing with turbulent velocities, in compar-
ison to scalar fields, is that the elements of the correlation or spectral tensor
cannot be specified independently. Conservation of mass and nondiver-
gence of the flow impose interrelationships between the tensor elements.
In fact, the longitudinal and lateral correlations are related by the equation
(Batchelor, 1953)

g (r) = f (r) +
r

2
df

dr
. (9)

The full correlation tensor, in terms of the longitudinal and lateral correla-
tions, is (Batchelor, 1953)

Rij (r1, r2, r3) = σ2
[
rirj
r2

f (r) +
(
δij −

rirj
r2

)
g (r)

]
. (10)

2.2 Energy Spectra

A particularly convenient way to deal with some of the differences between
the cases of scalar and vector random fields is to define turbulence models
based on their energy spectra, rather than their correlation functions. The en-
ergy spectrum E (κ) is defined such that its integral over the wavenumber
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κ (where κ2 = κ2
1 +κ2

2 +κ2
3) equals one-half of the total variance of the field.

For a scalar quantity s, ∫ ∞
0

Es (κ) dκ =
σ2

2
. (11)

Note from the Fourier transform relation, equation (5), with r1 = r2 = r3 =
0,

σ2 =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Φ (κ1, κ2, κ3) dκ1 dκ2 dκ3.

Hence we can find the isotropic 3D spectrum Φ (κ) by multiplying Es (κ)
by two, and then dividing by the “area” of a spherical shell in wavenumber
space, 4πκ2:

Φ (κ) =
Es (κ)
2πκ2

. (12)

Substituting into equation (5), we see that we can compute the correlation
function for a scalar from the energy spectrum using

R (r1, r2, r3) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Es (κ)
2πκ2

(13)

× exp [i (κ1r1 + κ2r2 + κ3r3)] dκ1 dκ2 dκ3.

Because of isotropy, we can also set r1 = r, r2 = 0, and r3 = 0, before the
integration. Hence

h (r) =
1
σ2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Es (κ)
2πκ2

exp (iκ1r) dκ1 dκ2 dκ3. (14)

In the case of vectors, such as the turbulent velocities, the energy spectrum
Ev (κ) is defined such that ∫ ∞

0
Ev (κ) dκ =

3σ2

2
. (15)

The reason for incorporating the factor 3 is that the total variance in the field
equals 3σ2, if σ2 is defined as the variance in just one of the three velocity
components. For a nondivergent, mass-conserving flow, the 3D spectra are
related to the energy spectrum according to (Batchelor, 1953)

Φij (κ) =
Ev (κ)
4πκ4

(
δijκ

2 − κiκj
)
. (16)

From this equation it can be shown, analogously to the scalar case, that

Φ11 (κ) + Φ22 (κ) + Φ33 (κ) =
Ev (κ)
2πκ2

.
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The equation for the correlation function of a vector quantity, in terms of
the energy spectrum, is slightly more complicated than the scalar result:

Rij (r1, r2, r3) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ev (κ)
4πκ4

(
δijκ

2 − κiκj
)

(17)

× exp [i (κ1r1 + κ2r2 + κ3r3)] dκ1 dκ2 dκ3.

From equation (17), we have for vectors

f(r) =
1
σ2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ev (κ)
4πκ4

(
κ2 − κ2

1

)
exp (iκ1r) dκ1 dκ2 dκ3, (18)

and

g(r) =
1
σ2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

Ev (κ)
4πκ4

(
κ2 − κ2

2

)
exp (iκ1r) dκ1 dκ2 dκ3. (19)

2.3 2D Correlation Function

The 2D correlation function is an important result for acoustic and electro-
magnetic wave propagation studies (Wilson, 1998). The 2D correlation func-
tion is defined as the 2D inverse Fourier transform of Φ (0, κ2, κ3),

b (ρ) =
∫ ∞
−∞

∫ ∞
−∞

Φ (0, κ2, κ3) exp [i (κ2r2 + κ3r3)] dκ2 dκ3, (20)

where ρ2 = r2
2 +r2

3. Equivalently, by Fourier transforming equation (5) with
respect to r1 and setting κ1 = 0, one has

b (ρ) =
1

2π

∫ ∞
−∞

R (r1, r2, r3) dr1. (21)

I should point out that most previous authors have called the 2D corre-
lation function the transverse correlation function. Unfortunately, I have al-
ready used that term for the function g (r). (Taxonomically speaking, the
function g (r) is a 3D correlation function, with the spatial separation trans-
verse to the velocity components.) My reason for adopting the different
terminology here (besides the name conflict) is that, since the 2D spectrum
(discussed in sect. 2.4) is the 2D Fourier transform of R (0, r2, r3), it only
makes sense that the 2D inverse Fourier transform of Φ (0, κ2, κ3) should
be called the 2D correlation function.

A second important point regarding equation (20) is that the integration
could just as well have been over the plane (κ1, κ2) (or (κ1, κ3), for that
matter) instead of (κ2, κ3). Then the appropriate spectrum in the integral
would be Φ (κ1, κ2, 0), and the spatial separation would be ρ2 = r2

1 + r2
2.

The two definitions are equivalent for isotropic fields.
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The 2D correlation function can be found in terms of the energy spectrum
by substitution of equation (12) into (20). The result is somewhat similar to
equation (14) for the normalized correlation function, except that the inte-
gration over κ1 is omitted, and r1 is set to zero:

b (ρ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Es (κh)
κ2
h

exp [i (κ2r2 + κ3r3)] dκ2 dκ3, (22)

where κ2
h = κ2

2+κ2
3. By rewriting this equation in polar coordinates over the

plane (κ2, κ3), and then using the integral definition of the Bessel function
(eq (9.1.21) in Abramowitz and Stegun, 1965), we can reduce the double
integral to a single one:

b (ρ) =
∫ ∞

0

Es (κh)
κh

J0 (κhρ) dκh. (23)

The 2D correlation function for fluctuations in the velocity components per-
pendicular to the displacement can be found by substitution of Φ11 (κ), as
given by equation (16), into the definition of the 2D correlation function,
equation (20):

b‖ (ρ) =
1

4π

∫ ∞
−∞

∫ ∞
−∞

Ev (κh)
κ2
h

exp [i (κ2r2 + κ3r3)] dκ2 dκ3 (24)

=
1
2

∫ ∞
0

Ev (κh)
κh

J0 (κhρ) dκh. (25)

Note the similarity between equations (25) and (23) — the only differences
are the factor of 1/2 appearing in (25), and Ev (κh) replacing Es (κh).

The 2D correlation function for velocity fluctuations in the plane of the dis-
placement is found by substitution of either Φ22 (κ) or Φ33 (κ) into equation
(20):

b⊥ (ρ) =
1

4π

∫ ∞
−∞

∫ ∞
−∞

Ev (κh)κ2
2

κ4
h

exp [i (κ2r2 + κ3r3)] dκ2 dκ3. (26)

In the above, the roles of κ2 and κ3 can be switched without a change in
the result. In any case, the function b⊥ (ρ) appears to be of no importance
in acoustic wave propagation calculations. The reason is that it is primarily
the velocity components parallel to acoustic wavefronts that affect propa-
gation. Hence b⊥ (ρ) is discussed no further in this report.

2.4 1D and 2D Spectral Functions

As mentioned in the introduction, besides the 3D spectra, sometimes 1D
and 2D spectra are needed for wave propagation studies. The 1D spectrum
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is simply a 1D Fourier transform of the correlation function, with the dis-
placements in the two untransformed directions set to zero. For a scalar,

Θ (κ) =
1

2π

∫ ∞
−∞

R (r, 0, 0) exp (−iκr) dr

=
σ2

2π

∫ ∞
−∞

h (r) exp (−iκr) dr. (27)

I indicate the normalized 1D spectrum for a scalar, Θ (κ) /σ2, with the no-
tation ĥ (κ).

Of course, in the case of vectors, the relative orientations between the ve-
locity components and the displacements must be considered. In general,
we have

Θij (κ1) =
1

2π

∫ ∞
−∞

Rij (r1, 0, 0) exp (−iκ1r1) dr1, (28)

and likewise for the r1 and r2 directions. There are two cases of par-
ticular interest: one where the transformation is parallel to the velocity
components,

f̂ (κ) =
1

2π

∫ ∞
−∞

f (r) exp (−iκr) dr = Θ11 (κ1) /σ2, etc, (29)

and the other where it is perpendicular,

ĝ (κ) =
σ2

2π

∫ ∞
−∞

g (r) exp (−iκr) dr = Θ22 (κ1) /σ2, etc. (30)

Incidentally, equations (9), (10), and (16) can be used to show that the lon-
gitudinal spectrum is related to the energy spectrum according to

Ev (κ) = σ2κ3 d

dκ

[
1
κ

df̂ (κ)
dκ

]
. (31)

A generalization of the 1D spectrum that is sometimes useful in wave prop-
agation studies is the 1D cross spectrum. Its definition is the same as that
of the usual 1D spectrum, except that the arguments r2 and r3 in the corre-
lation function are nonzero:

Θij (κ1; r2, r3) =
1

2π

∫ ∞
−∞

Rij (r1, r2, r3) exp (−iκ1r1) dr1. (32)

The 2D spectrum is defined as the 2D Fourier transform of the correlation
function. For a scalar,

φ (κ1, κ2) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

R (r1, r2, 0) exp [−i (κ1r1 + κ2r2)] dr1 dr2. (33)
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Assuming horizontal isotropy, and using the integral form of the Bessel
function (e.g., eq (9.1.21) in Abramowitz and Stegun, 1965), one finds

φ (κh) =
σ2

2π

∫ ∞
0

h (r)J0 (κhr) r dr, (34)

in which κ2
h = κ2

1 + κ2
2. Alternatively, from the definitions of the Fourier

transform and energy spectrum, it can be shown that

φ (κ1, κ2) =
∫ ∞
−∞

Φ (κ1, κ2, κ3) dκ3

=
∫ ∞

0

Es (κ)
πκ2

dκ3. (35)

The definition of the 2D spectrum for vectors is of course the same as equa-
tion (33), except that φij and Rij appear in place of φ and R. However,
equations (34) and (35) do not hold. From equations (9), (10), and (16), it
can be shown that

φ11 (κ1, κ2) =
σ2

4π2

∫ ∞
−∞

∫ ∞
−∞

{
f (r) +

r

2

(
1 +

r2
1

r2

)
df

dr

}
e−i(κ1r1+κ2r2) dr1 dr2

=
∫ ∞

0

Ev (κ)
2πκ4

(
κ2 − κ2

1

)
dκ3, and (36)

φ33 (κ1, κ2) =
σ2

4π2

∫ ∞
−∞

∫ ∞
−∞

g (r) e−i(κ1r1+κ2r2) dr1 dr2

=
∫ ∞

0

Ev (κ)
2πκ4

(
κ2 − κ2

3

)
dκ3. (37)

In horizontally isotropic turbulence, the equations for φ22 (κ1, κ2) are the
same as those for φ11 (κ1, κ2), except that the subscripts 1 and 2 are inter-
changed. Hence,

φ22 (κ1, κ2) = φ11 (κ2, κ1) .

One of the turbulence models considered in this report (the HGW model,
sect. 7) is vertically inhomogeneous. By definition, this means that equation
(2) is invalid. The most simplified form of the correlation function is

R
(
r1, r2, z, z

′) = R
(
x1, x

′
1, x2, x

′
2, z, z

′) , (38)

in which z = x3 has been used for the vertical coordinate. Obviously, be-
cause of the inhomogeneity, we can no longer Fourier transform the cor-
relation function with respect to the vertical coordinate. However, we can
still Fourier transform with respect to the horizontal coordinates (x1, x2).
The resulting spectrum is called the 2D cross spectrum:
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φ
(
κ1, κ2; z, z′

)
=

1
4π2

∫ ∞
−∞

∫ ∞
−∞

R
(
r1, r2, z, z

′) exp [−i (κ1r1 + κ2r2)] dr1 dr2. (39)

The 2D cross spectrum for vectors is defined in the same way, except with
subscript ij on the spectrum and correlation function. Note that when z =
z′, the 2D cross spectrum reduces to the usual 2D spectrum. Also, when the
turbulence is vertically homogeneous, the 2D cross spectrum depends only
on the separation r3 = z′ − z.

2.5 Length Scales

It is important that we be able to consistently quantify length scales asso-
ciated with given spectra. By length scale, I mean a value associated with
the size of eddies from some part of the spectrum. One of the most useful
length scales is the integral length scale, which characterizes the size of the
most energetic eddies. For a scalar quantity, it is defined as

L =
1
σ2

∫ ∞
0

R(r) dr =
∫ ∞

0
h(r) dr. (40)

By setting κ = 0 in equation (27), one can derive the following simple rela-
tionship between the integral length scale and the 1D spectrum:

L = πĥ (0) . (41)

The integral length scale and 2D correlation function are also simply re-
lated. From the Fourier transform relation between the correlation function
and the spectrum, and from equation (12), we have

1
2π

∫ ∞
−∞

R(r1, 0, 0) exp (−iκ1r1) dr1 =
∫ ∞
−∞

∫ ∞
−∞

E (κ)
2πκ2

exp [κ2r2 + κ3r3] dκ2 dκ3.

Setting r2 = r3 = 0, and κ1 = 0, and using the fact that R(r1, 0, 0) is an even
function, we obtain

1
π

∫ ∞
0

R(r1, 0, 0) dr1 =
1

2π

∫ ∞
−∞

∫ ∞
−∞

E (κh)
κ2
h

dκ2 dκ3.

If this result is compared with equations (22) and (40), it is now evident that

L =
π

σ2
b (0) . (42)

In the vector case, the direction of the velocity components as well as the
direction of the displacement must be considered. Two significant scales
can be defined: one where the displacement is parallel to the velocity,

L‖ =
∫ ∞

0
f(r) dr = πf̂ (0) , (43)
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and the other where it is perpendicular,

L⊥ =
∫ ∞

0
g(r) dr = πĝ (0) . (44)

For homogeneous, isotropic turbulence, it can be proven that (Batchelor,
1953)

L‖ = 2L⊥. (45)

Furthermore, using a derivation similar to the scalar case, one finds

L‖ =
π

σ2
b‖ (0) . (46)

2.6 Structure Functions and Parameters

The structure function for an isotropic, homogeneous scalar field is defined
as

D(r) =
〈

[s (r)− s (0)]2
〉
. (47)

For a vector, the structure function depends on the direction of the
displacement:

Dij(r) =
〈

[ui (r)− uj (0)]2
〉
. (48)

From the definitions, it is easily shown that

D (r) = 2σ2 − 2R (r) = 2σ2 [1− h (r)] , and (49)

Dij(r) = 2σ2 − 2Rij (r) . (50)

For vectors, it is convenient to define

D‖ (r) = 2σ2 [1− f (r)] , and (51)

D⊥ (r) = 2σ2 [1− g (r)] . (52)

Of particular interest is the structure function for small separations (r ¿ L).
Based on Kolmogorov’s (1941) scaling arguments, the structure functions
should be proportional to r2/3 in this limit. The ratio D (r) /r2/3, for small
r, is called the scalar structure-function parameter C2

s . For vectors, a longitu-
dinal displacement is used to define the structure-function parameter C2

v .
Hence,

C2
s = lim

r→0

2σ2

r2/3
[1− h (r)] , and (53)

C2
v = lim

r→0

2σ2

r2/3
[1− f (r)] . (54)

14



Similar to the ordinary structure function is the 2D structure function, de-
fined for scalars as

d (ρ) = 2 [b (0)− b (ρ)] , (55)

and for vectors as
d‖ (ρ) = 2

[
b‖ (0)− b‖ (ρ)

]
. (56)

The 2D structure function is needed for calculations of the mutual coher-
ence function (see the introduction).

2.7 Energy Spectral Approach to Turbulence Modeling

In sections 2.1 to 2.6, I considered the interrelationships among various cor-
relations, spectra, structure functions, and length scales that can be defined
for random fields. Some care must be taken in devising a new statistical
turbulence model so that none of the required relationships is violated. Ac-
tually, whether one is dealing with scalar or vector fields, only one correla-
tion or spectral function can be uniquely specified; the others follow from
the given relationships. The most obvious choices for the specified function
are the following:

1. The energy spectrum E (κ).

2. The scalar (or longitudinal) correlation h (r) (or f (r)).

3. The scalar (or longitudinal) 1D spectral density ĥ (κ) (or f̂ (κ)).

The relationship between E (κ) and f̂ (κ) was given by equation (31). Of
course, f (r) and f̂ (κ) are simply Fourier transform pairs. Equations for all
the other correlations, spectra, etc, of interest, in terms ofE (κ) and/or f (r)
have already been discussed.

In the following sections of this report, I discuss several turbulence mod-
els derived from prescribed forms for the energy spectrum. The decision
to use E (κ), instead of either f (r) or f̂ (κ), is somewhat arbitrary. How-
ever, it does lead to somewhat simpler results for quantities such as the 2D
correlation function, an advantage that I demonstrate shortly.

Suppose now that we use the same functional form for both the scalar and
vector energy spectra, by setting∗

Ev (κ) = 3Es (κ) . (57)

∗Of course, the scalar and vector fields can have different dimensions, in which case
equation (57) is not satisfied dimensionally. But the equivalence I imply here is only a func-
tional equivalence of the energy spectra. One can easily overcome any formal difficulties by
nondimensionalizing the fields.
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Let us consider what additional interrelationships between various scalar
and vector results arise from making this assumption.

With regard to the correlation functions, by comparing equations (14), (18),
and (19), we find

h (r) =
1
3

[f (r) + 2g (r)] . (58)

The main utility of this equation is that it can reduce the work involved in
determining the correlation functions. For example, suppose we perform
the integrations specified by equation (18) to find f (r). Next, equation (9)
can be used to easily determine g (r), and then equation (58) can be used
to easily determine h (r). This procedure is generally easier than solving
equations (14), (18), and (19) individually.

By integrating equation (58), we can easily derive the following relation-
ship for the integral length scales:

L =
1
3

(
L‖ + 2L⊥

)
=

2
3
L‖. (59)

Fourier transformation of equation (58) of course implies

ĥ (κ) =
1
3

[
f̂ (κ) + 2ĝ (κ)

]
. (60)

A generalized version of this equation can be derived for the 1D cross spec-
tra. Using equation (10), one can show thatR11 (r1, r2, r3)+R22 (r1, r2, r3)+
R33 (r1, r2, r3) = σ2 [f (r) + 2g (r)]. It then follows from equation (58) that

R (r1, r2, r3) =
1
3

[R11 (r1, r2, r3) +R22 (r1, r2, r3) +R33 (r1, r2, r3)] . (61)

Fourier transformation of this equation with respect to r1 yields

Θ (κ1, r2, r3) =
1
3

[Θ11 (κ1, r2, r3) + Θ22 (κ1, r2, r3) + Θ33 (κ1, r2, r3)] . (62)

For the 2D correlation functions, substituting equation (57) into (24) and
comparing to equation (22) yields the following result:

b‖ (ρ) =
3
2
b (ρ) . (63)

Hence, if we choose the same functional form for the energy spectrum for
both the scalars and vectors, the resulting 2D correlation functions will be
proportional to one another. This result can make wave propagation calcu-
lations much simpler.
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If we apply a Fourier transform to equation (62) (with r3 = 0), it follows for
the 2D spectra that

φ (κ1, κ2) =
1
3

[φ11 (κ1, κ2) + φ22 (κ1, κ2) + φ33 (κ1, κ2)] . (64)

Note also that φ11 (κ2, κ1) = φ22 (κ1, κ2). Equation (64) also applies to
the 2D cross spectra, after we make the notational change φ (κ1, κ2) →
φ (κ1, κ2; z, z′), etc.

For the 3D spectra, we have from equations (12) and (16)

Φij (κ) =
3
2

Φ (κ)
(
δijκ

2 − κiκj
)
. (65)

Equations (58) to (65) are helpful because they can reduce the amount of
work required to derive various functions for a turbulence model. But it
must be kept in mind that they are valid only when the energy spectra sat-
isfy the functional equivalence relationship, equation (57). Other modeling
procedures do not necessarily yield the same results.
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3. Synthesis of Turbulence Using the Method of Random Phases

3.1 Motivation

During the past decade, acoustic propagation modeling has now advanced
to the point where full-wave solutions can be computed for propagation
through a medium having two- or three-dimensional spatial variability in
the index-of-refraction field (e.g., Gilbert et al., 1990, Chevret et al., 1996).
What is still needed, though, are realistic turbulence fields for input to these
models.

Since a turbulence field cannot be directly measured to the fidelity needed
for wave propagation calculations, some method for synthesizing turbu-
lence is needed. Computer simulations of turbulence are available; in par-
ticular, the type of simulation called a large-eddy simulation (LES) has been
successfully used to study atmospheric turbulence for the past two decades
(Deardorff, 1970b, Moeng, 1984). LES is regarded as faithful to the atmo-
sphere in most aspects. The difficulty with LES-generated data is the reso-
lution, currently limited to about 30 m in the horizontal and 10 m in the ver-
tical. Supposing that we need to resolve the turbulence field to better than
1/5 acoustic wavelength for reasonable calculations, the LES data would
be useful for acoustic propagation modeling only at acoustic frequencies of
about 6 Hz and lower. Therefore alternatives to LES are needed.

Gilbert et al. (1990) synthesized a planar turbulence field solely from its 2D
spectrum, by multiplying the square root of the spectrum at each wavenum-
ber by a random phase, and then inverse Fourier transforming. This method
has also been used in other areas of research. Henceforth I call this the
random-phase method (RPM). It is computationally inexpensive and produces
synthetic turbulence having second-order statistics consistent with the as-
sumed turbulence spectrum. However, the fields created by this method do
not necessarily have third- and higher order statistics that are realistic for
turbulence. In particular, RPM cannot capture intermittent features known
to be characteristic of turbulence. But if one is interested only in calculating
means and second-order statistics of the acoustic field, a method for pro-
ducing synthetic turbulence that is realistic only to second order may be
satisfactory. Hence RPM can be useful in certain applications.

One shortcoming of RPM as implemented by Gilbert et al. is that the tur-
bulence model they used was an isotropic, homogeneous Gaussian model.
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Atmospheric turbulence, particularly near the ground, is known to violate
all these properties. Actually, Gilbert et al.’s method can be used to synthe-
size anisotropic non-Gaussian turbulence. One would simply have to start
with the appropriate turbulence model for the spectral density function. It
is the inability of the standard RPM to incorporate inhomogeneity that, in
the end, limits its utility. Therefore we need a method for generalizing RPM
so that inhomogeneous turbulence structure can be synthesized.

In section 3.2, I describe a generalized random-phase method (GRPM) to
synthesize turbulence for a given spectral model, be it homogeneous or
inhomogeneous. Next, in section 3.3, I show how the method reduces to
the RPM used by Gilbert et al. (1990) for homogeneous turbulence. Last, in
section 3.4, the method is applied to vertically inhomogeneous turbulence,
which is a case of particular interest for the atmosphere.

3.2 Generalized Random-Phase Method

The basic idea underlying GRPM is to multiply the empirical orthogonal func-
tions (EOFs) by random phases and then sum them to form the synthetic
turbulence field. The reason why this reduces to the standard RPM in the
case of homogeneous turbulence is that the EOFs of a homogeneous cor-
relation function are harmonic functions (Lumley, 1971, Wilson, 1996). The
EOFs are defined as the eigenfunctions of the correlation function:∫

R
(
x,x′

)
ψ
(
x′
)
dx′ = λψ (x) ,

where x = (x1, x2, x3), the ψ’s are the EOFs, and λ is the eigenvalue. (Al-
though the above equation was specifically written for the scalar case, it can
be used for vector fields as well. The generalization of the eigenvalue prob-
lem to vectors and to multiple, correlated fields is accomplished through
tensors (e.g., Wilson, 1996).)

Here is a step-by-step description of the GRPM:

1. Fourier transform the eigenvalue problem with respect to the homo-
geneous coordinates. Because the eigenvalue equation is a convolu-
tion with respect to the homogeneous coordinates, the eigenvalue
problem is reduced to a simple multiplication after the transform, and
we are left only with an integration over the inhomogeneous coordi-
nates (Wilson, 1996). The result is∫

R̂
(
k; ξ, ξ′

)
ψ̂
(
k; ξ′

)
dξ′ = λ (k) ψ̂ (k; ξ) . (66)

In the above, functions that have been transformed with respect to
the homogeneous coordinates are indicated by a “hat,” e.g., ψ̂. The
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inhomogeneous coordinates are indicated by ξ, and the wavenum-
bers corresponding to the homogeneous coordinates are indicated by
k.

2. Find the eigenfunctions and eigenvalues in the transformed domain.
Let us indicate the solutions as ψ̂n (k; ξ), λn (k), where n = 1, 2, 3, . . .
The eigenfunctions are orthonormal, so that∫

ψ̂m (k; ξ) ψ̂
∗
n (k; ξ) dξ = δmn, (67)

where δmn = 1 if m = n and zero otherwise.

3. Expand the transformed, synthetic field ŝ (k; ξ) in terms of the eigen-
functions ψ̂n (k; ξ):

ŝ (k; ξ) =
∑
n

an (k) ψ̂n (k; ξ) . (68)

Note that the expansion coefficients an (k) are random functions.

4. Determine the coefficients in the expansion such that

R̂
(
k; ξ, ξ′

)
=
〈
ŝ (k; ξ) ŝ∗

(
k; ξ′

)〉
. (69)

(The asterisk indicates complex conjugation.)

5. Inverse Fourier transform ŝ (k; ξ) to find s (x).

The key to the procedure is step 4. By selecting the expansion coefficients
in this manner, we assure that the correlation function of the synthetic field
matches the model correlation function. So, how do we choose the expan-
sion coefficients such that equation (69) is satisfied? First note that by sub-
stituting the expansion (68) into (69), we have

R̂
(
k; ξ, ξ′

)
=
∑
m

∑
n

〈am (k) a∗n (k)〉 ψ̂m (k; ξ) ψ̂
∗
n

(
k; ξ′

)
.

Multiplying both sides by ψ̂j
(
k; ξ′

)
, integrating with respect to ξ′, and in-

voking orthonormality, we have∫
R̂
(
k; ξ, ξ′

)
ψ̂j
(
k; ξ′

)
dξ′ =

∑
m

〈
am (k) a∗j (k)

〉
ψ̂m (k; ξ) .

Comparison with equation (66) now yields∑
m

〈am (k) aj (k)〉 ψ̂m (k; ξ) = λj (k) ψ̂j (k; ξ) .
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Finally, multiplying by ψ̂
∗
n (k; ξ), integrating, and invoking orthonormality

one more time, we find

〈am (k) a∗n (k)〉 = δmnλn (k) . (70)

This equation shows that the expansion coefficients are statistically orthogo-
nal, and that the expected value of their magnitude squared equals the cor-
responding eigenvalue. The simplest way to choose the coefficients while
satisfying the orthogonality relationship is to set

an (k) =
√
λn (k) exp (iγn (k)) , (71)

where γn (k) is some random phase. This method for choosing the coeffi-
cients is the basis of GRPM.

3.3 Homogeneous Turbulence

Application of GRPM to homogeneous turbulence is particularly simple.
In this case, the Fourier transform is applied to all coordinates, and the
transformed eigenvalue problem corresponding to equation (66) is simply

Φ (κ) ψ̂ (κ) = λ (κ) ψ̂ (κ) . (72)

We make the eigenfunctions orthonormal by setting ψ̂ (κ) = 1. Hence
Φ (κ) = λ (κ), and equation (71) becomes

a (κ) =
√

Φ (κ) exp (iγ (κ)) . (73)

The transformed field is simply ŝ (κ) = a (κ).

3.4 Vertically Inhomogeneous Turbulence

The next most complicated case occurs when one of the coordinates is inho-
mogeneous. This is an important special case, since over relatively flat ter-
rain, atmospheric boundary layer structure is approximately homogeneous
in the horizontal directions, but inhomogeneous in the vertical. In this situ-
ation, the function R̂

(
k; ξ, ξ′

)
is the 2D cross spectrum, φ (κ1, κ2; z, z′), dis-

cussed in section 2.4. The eigenvalue problem is∫
φ
(
κ1, κ2; z, z′

)
ψ̂
(
κ1, κ2; z′

)
dz′ = λ (κ1, κ2) ψ̂ (κ1, κ2; z) . (74)

Generally one must solve the eigenvalue problem by discretizing the com-
putational domain in the z-direction, and then numerically solving the re-
sulting matrix equation (Moin and Moser, 1989, Wilson, 1996). The expan-
sion coefficients are
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an (κ1, κ2) =
√
λn (κ1, κ2) exp (iγn (κ1, κ2)) , (75)

where n = 1, 2, . . . , N ,N being the number of grid points in the z-direction.
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4. Gaussian Model

4.1 Energy Spectrum and 3D Correlations

Starting with this section, I consider specific statistical models for atmo-
spheric turbulence. Unfortunately, there are no 3D turbulence models that
are known to work satisfactorily for a variety of atmospheric conditions.
Hence we are forced to consider idealized models.

In this section I consider one such idealization, the Gaussian model. The
main advantage of the Gaussian model is its analytical convenience. But
it only works well for qualitatively modeling the largest scale features of
the turbulence (the energy subrange). The von Kármán model (described
in sect. 4.2) is somewhat more general, since it also describes the smaller
scale structure (the inertial subrange) realistically.

The energy spectrum, for the scalar Gaussian model, is defined as

Es (κ) =
σ2κ4L5

24
√
π

exp

(
−κ

2L2

4

)
. (76)

In accordance with the discussion in section 2.7, the energy spectrum for
the vector Gaussian model is three times the scalar model:

Ev (κ) =
σ2κ4L5

8
√
π

exp

(
−κ

2L2

4

)
. (77)

By integration of equation (31), the function f̂ (κ) can be found fromEv (κ).
The result for the Gaussian spectrum is

f̂ (κ) =
L

2
√
π

exp

(
−κ

2L2

4

)
. (78)

The longitudinal correlation function is found by calculation of the inverse
Fourier transform:

f (r) = exp

(
− r

2

L2

)
. (79)

The lateral correlation function, found by equation (9), is

g (r) =

(
1− r2

L2

)
exp

(
− r

2

L2

)
. (80)
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Finally, from equation (58), we have the scalar correlation function∗

h (r) =

(
1− 2

3
r2

L2

)
exp

(
− r

2

L2

)
, (81)

and its Fourier transform

ĥ (κ) =
L

3
√
π

(
1 +

κ2L2

4

)
exp

(
−κ

2L2

4

)
. (82)

By performing the integration in equation (43), we find

L‖ =
√
π

2
L = 0.886L. (83)

Hence, from equation (59),

L =
√
π

3
L = 0.591L. (84)

The energy spectrum, as a function of kL, is plotted in figure 1.

Figure 1. Comparison of
energy spectral functions
for Gaussian, von Kármán,
and Kolmogorov models.
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∗Previous authors (such as Ostashev, 1994) have used f (r) = h (r) = exp
(
−r2/L2

)
. The

equation used for h (r) in this report is different because of the “energy spectral approach”
I follow. Since neither equation (79) nor (81) is known to agree more satisfactorily with data,
it is ultimately a matter of convention which one is used.
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4.2 1D Cross Spectra

The 1D cross spectrum can be found by calculation of the Fourier transform
of the correlation function with respect to r1. The required integrals are
given by equations (3.896.4) and (3.952.4) in Gradshteyn and Ryzhik (1994).
For scalars, one finds

Θ (κ; r2, r3) =
σ2L

3
√
π

(
1− r2

⊥
L2

+
κ2L2

4

)
exp

(
−κ

2L2

4
− r2

⊥
L2

)
, (85)

where r2
⊥ = r2

2 + r2
3. The results for vectors are similarly found to be

Θ11 (κ; r2, r3) =
σ2L

2
√
π

(
1− r2

⊥
L2

)
exp

(
−κ

2L2

4
− r2

⊥
L2

)
, and (86)

Θ22 (κ; r2, r3) =
σ2L

4
√
π

(
1− 2r2

3

L2
+
κ2L2

2

)
exp

(
−κ

2L2

4
− r2

⊥
L2

)
. (87)

The equation for Θ33 (κ; r2, r3) is the same as the one for Θ22 (κ; r2, r3), ex-
cept that r2 replaces r3 on the right.

4.3 2D Correlation Function

The scalar 2D correlation function can be found from the energy spectrum
by substitution of equation (76) into (22):

b(ρ) =
σ2L

3
√
π

∫ ∞
0

κ3 exp

(
−κ

2L2

4

)
J0 (κρ) dκ.

The solution to this integral, from equation (11.4.28) in Abramowitz and
Stegun (1965), is

b(ρ) =
σ2L

3
√
π
M

(
2, 1,− ρ

2

L2

)
,

where M() is called Kummer’s function. From (13.4.1) and (13.6.12) in
Abramowitz and Stegun (1965), we see that M (2, 1, z) = (1 + z) ×
M (1, 1, z) = (1 + z) ez . Hence our result for the 2D correlation function
is

b(ρ) =
σ2L

3
√
π

(
1− ρ2

L2

)
exp

(
− ρ

2

L2

)
. (88)

An equation equivalent to this one was given previously by Mellert et al.
(1994). The 2D correlation function for the velocity field b‖(ρ) is found sim-
ply by multiplication by 3/2, as indicated by equation (63).
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The 2D structure function for the Gaussian model,

d (ρ) = 2 [b(ρ)− b(0)] =
2σ2L

3
√
π

[
1−

(
1− ρ2

L2

)
exp

(
− ρ

2

L2

)]
, (89)

is plotted in figure 2.

4.4 2D and 3D Spectra

The 2D spectrum for a Gaussian scalar can be found without much diffi-
culty through the integration in equation (35). The result is

φ (κh) =
σ2L2

12π

(
1 +

κ2
hL

2

2

)
exp

(
−κ

2
hL

2

4

)
. (90)

Similarly, we find for vectors

φ11 (κ1, κ2) =
σ2L2

8π

(
1 +

κ2
1L

2

2

)
exp

(
−κ

2
hL

2

4

)
, and (91)

φ33 (κh) =
σ2κ2

hL
4

16π
exp

(
−κ

2
hL

2

4

)
. (92)

The 3D spectra are computed easily from the energy spectrum (eq (76) and
(77)), with equation (12) used for scalars and equation (16) for vectors.

Figure 2. Comparison of
2D structure functions
corresponding to
Gaussian, von Kármán,
and Kolmogorov
turbulence models.
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4.5 2D Cross Spectra

One can find the 2D cross spectrum by calculating the inverse Fourier trans-
form of the 3D spectra with respect to κ3. For scalars, the resulting integrals
are calculated with equations (3.896.4) and (3.952.4) from Gradshteyn and
Ryzhik (1994). The result is

φ (κ1, κ2; r3) =
σ2L2

12π

(
1− 2r2

3

L2
+
κ2
hL

2

2

)
exp

(
−κ

2
hL

2

4
− r2

3

L2

)
. (93)

The corresponding equations for vectors are

φ11 (κ1, κ2; r3) =
σ2L2

8π

(
1− 2r2

3

L2
+
κ2

2L
2

2

)
exp

(
−κ

2
hL

2

4
− r2

3

L2

)
, and (94)

φ33 (κ1, κ2; r3) =
σ2κ2

hL
4

16π
exp

(
−κ

2
hL

2

4
− r2

3

L2

)
. (95)

The equation for φ22 (κ1, κ2; r3) is the same as equation (94), except that κ2

on the right side is replaced by κ1.
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5. Von Kármán Model

5.1 Model Definition and Energy Spectrum

The von Kármán model is developed from the following equation for the
energy spectrum of a scalar:

Es (κ) =
4Γ (ν + 5/2)

3
√
πΓ (ν)

σ2κ4`5

(1 + κ2`2)ν+5/2
. (96)

The parameter ` is a characteristic length scale, Γ () is the gamma function,
and ν controls the power-law dependence in the inertial subrange (κ`À 1).
Generally, we set ν = 1/3 to obtain Kolmogorov’s (1941) κ−5/3 power law
for the inertial subrange. Figure 1 (p 24) compares the von Kármán en-
ergy spectrum to the Gaussian energy spectrum. The main difference be-
tween the von Kármán and Gaussian models is that the Gaussian model
decays much more rapidly at large wavenumbers. The vector von Kármán
energy spectrum is simply three times the scalar one, so that equation (15)
is satisfied.

Complete results for the vector version of the von Kármán model were
given previously (Wilson, 1997b). With these vector results as a starting
point, the equations in section 2.7 allow us to find the corresponding scalar
results with little difficulty. For completeness, I provide here the important
results for both scalars and vectors:

h (r) =
2

Γ (1/3)

(
r

2`

)1/3 [
K1/3

(
r

`

)
−
(
r

3`

)
K2/3

(
r

`

)]
, (97)

ĥ (κ) =
Γ (5/6)

9
√
πΓ (1/3)

`

(1 + κ2`2)5/6

[
11− 5

1 + κ2`2

]
, (98)

f (r) =
2

Γ (1/3)

(
r

2`

)1/3

K1/3

(
r

`

)
, (99)

f̂ (κ) =
Γ (5/6)√
πΓ (1/3)

`

(1 + κ2`2)5/6
, (100)

g (r) =
2

Γ (1/3)

(
r

2`

)1/3 [
K1/3

(
r

`

)
−
(
r

2`

)
K2/3

(
r

`

)]
, and (101)

ĝ (κ) =
Γ (5/6)√
πΓ (1/3)

`

(1 + κ2`2)5/6

[
4
3
− 5

6 (1 + κ2`2)

]
, (102)
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where Kν is the modified Bessel function of the second kind.

The integral length scales are

L =
2
√
πΓ (5/6)

3Γ (1/3)
` = 0.498` and (103)

L‖ =
√
πΓ (5/6)
Γ (1/3)

` = 0.747`. (104)

5.2 1D Cross Spectra

Equations for the vector 1D cross spectra were derived previously (Wilson,
1997b). The results are

Θ11 (κ; r2, r3) =
2σ2`√
πΓ (1/3)

(
ξ/2

1 + κ2`2

)5/6 [
K5/6 (ξ)− ξ

2
K1/6 (ξ)

]
, and (105)

Θ22 (κ; r2, r3) =
2σ2`√
πΓ (1/3)

(
ξ/2

1 + κ2`2

)5/6

×
[

4
3
K5/6 (ξ)− ξ/2

1 + κ2`2
K11/6 (ξ) +

r2
2(1 + κ2`2)

2ξ`2
K1/6 (ξ)

]
, (106)

where ξ2 =
(
r2

2 + r2
3

) (
1 + κ2`2

)
/`2. The equation for Θ33 (κ; r2, r3) is the

same as the preceding, except that r3 replaces r2 on the right. The scalar
result follows from equation (62):

Θ (κ; r2, r3) =
2σ2`

3
√
πΓ(1/3)

(
ξ/2

1 + κ2`2

)5/6 [ 11
3
K5/6 (ξ)− ξ

1 + κ2`2
K11/6 (ξ)

]
. (107)

5.3 2D Correlation Function

The 2D correlation function for the scalar von Kármán model is

b (ρ) =
4σ2`

3
√
πΓ (1/3)

(
ρ

2`

)5/6 [
K5/6

(
ρ

`

)
− ρ

2`
K1/6

(
ρ

`

)]
. (108)

Integrals (3.773.6) and (6.726.4) in Gradshteyn and Rhyzhik (1994) were
used to derive this result. As before, the vector 2D correlation function
b‖ (ρ) is simply 3/2 times the scalar result. The 2D structure function for the
scalar von Kármán model is plotted and compared to the Gaussian model
in figure 2 (p 26).

29



5.4 2D and 3D Spectra

The 2D spectra for the vector von Kármán model, derived elsewhere (Wil-
son, 1997b), are

φ11 (κ1, κ2) =
σ2`2

6π
(
1 + κ2

h`
2
)4/3

[
1 +

8
3

κ2
2`

2

1 + κ2
h`

2

]
, (109)

φ33 (κ1, κ2) =
4σ2κ2

h`
4

9π
(
1 + κ2

h`
2
)7/3 , (110)

φ12 (κ1, κ2) = − 4σ2κ1κ2`
4

9π
(
1 + κ2

h`
2
)7/3 , and (111)

φ13 (κ1, κ2) = 0. (112)

The scalar 2D spectrum, found with equation (64), is

φ (κh) =
σ2`2

9π
(
1 + κ2

h`
2
)4/3

[
1 +

8
3

κ2
h`

2

1 + κ2
h`

2

]
. (113)

The 3D spectra are computed easily from the energy spectrum, equation
(96), with equation (12) used for scalars and (16) for vectors.

5.5 2D Cross Spectra

The 2D cross spectra for the vector von Kármán model are (Wilson, 1997b)

φ11 (κ1, κ2; r3) =
2σ2`2 (ζh/2)4/3

πΓ (1/3) (1 + κ2
h`

2)4/3

×
[

11
6
K4/3 (ζh)− ζh(1 + κ2

1`
2)

2(1 + κ2
h`

2)
K7/3 (ζh)

]
, (114)

φ33 (κ1, κ2; r3) =
2σ2κ2

h`
4 (ζh/2)7/3

πΓ (1/3) (1 + κ2
h`

2)7/3
K7/3 (ζh) , (115)

where ζh = (r3/`)
√

1 + κ2
h`

2. The equation for φ22 is the same as the one for
φ11, except that κ2 replaces κ1 on the right. The scalar 2D cross spectrum,
found from equation (64), is

φ (κ1, κ2; r3) =
4σ2`2 (ζh/2)4/3

3πΓ (1/3) (1 + κ2
h`

2)4/3

×
[

11
6
K4/3 (ζh)− ζh

2(1 + κ2
h`

2)
K7/3 (ζh)

]
. (116)
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6. Kolmogorov Model

6.1 Energy Spectrum and Model Definition

The Kolmogorov model is based on scaling hypotheses that apply only to
the inertial subrange: that is, for ρ ¿ L in the spatial domain, or κL À 1
in the wavenumber domain. Actually, the von Kármán model discussed
in the previous section has an inertial subrange satisfying Kolmogorov’s
hypotheses. Therefore the approach I take for deriving the Kolmogorov
model is simply to calculate limiting forms of the von Kármán model. It
needs to be pointed out, though, that this procedure produces a possible
Kolmogorov model; there is no unique Kolmogorov model. Kolmogorov’s
hypotheses provide only proportionality relations; the numerical constants
appearing in the equations in this section depend in part on assumptions
intrinsic to the von Kármán model.

The energy spectrum for scalars is the large κ`-limit of equation (96):

Es (κ) =
4Γ (17/6)

3
√
πΓ (1/3)

σ2` (κ`)−5/3 . (117)

(Since ` and L are the same order, κL À 1 is equivalent to κ` À 1.) This
scalar energy spectrum is plotted in figure 1. As before, we choose Ev (κ) =
3Es (κ). In the next section, I derive expressions for the structure-function
parameters (defined later in eq (130) and (131)). These enable us to write
the energy spectra as

Es (κ) =
25/3

11
√
π

Γ (17/6)
Γ (2/3)

C2
sκ
−5/3 ' 0.2074C2

sκ
−5/3, and (118)

Ev (κ) =
25/3

3
√
π

Γ (17/6)
Γ (2/3)

C2
vκ
−5/3 ' 0.7604C2

vκ
−5/3. (119)

Equations (118) and (119) (but not eq (117)) are the ones that would normally
be used for the Kolmogorov model. The reason is that equation (117) ex-
plicitly contains σ2 and `, two parameters that depend primarily on the
large-scale structure of the flow. On the other hand, equations (118) and
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(119) contain structure-function parameters, which describe the small-scale
(inertial subrange) structure of the flow.∗

For the 1D spectra, we find

ĥ (κ) =
11Γ (5/6)

9
√
πΓ (1/3)

` (κ`)−5/3 , and (120)

f̂ (κ) =
Γ (5/6)√
πΓ (1/3)

` (κ`)−5/3 . (121)

In terms of the structure-function parameter, the 1D scalar spectrum is

σ2ĥ (κ) =
Γ (5/6) 22/3

6
√
πΓ (2/3)

C2
sκ
−5/3 ' 0.1244C2

sκ
−5/3. (122)

The equation for the 1D longitudinal vector spectrum is the same as equa-
tion (122), except with C2

v replacing C2
s . The 1D transverse spectrum is 4/3

times the longitudinal spectrum.

∗The Kolmogorov spectral equations given by Tatarskii (1971) and Ostashev (1994) differ
somewhat from equations (118) and (119). For example, the 3D spectral density of a scalar
is given as

Φ (κ) =
5
√

3Γ (2/3)

36π2
C2
sκ
−11/3. (a)

On the other hand, since Φ (κ) = Es (κ) /2πκ2, equation (118) implies

Φ (κ) =
22/3

11π3/2

Γ (17/6)

Γ (2/3)
C2
sκ
−11/3. (b)

To prove that this equation is equivalent to the one given by Tatarskii and Ostashev, we first
use the recursion property of the gamma function, Γ (z + 1) = zΓ (z). Hence,

Γ
(

17

6

)
=

55

36
Γ
(

5

6

)
.

From the duplication formula for the gamma function (eq (6.1.18) in Abramowitz & Stegun,
1965), we have

Γ
(

2

3

)
=

1

21/3
√
π

Γ
(

1

3

)
Γ
(

5

6

)
.

Furthermore, from the reflection formula (eq (6.1.17) in Abramowitz & Stegun, 1965),

Γ
(

1

3

)
Γ
(

2

3

)
=

2π√
3
.

Putting these various results together, we find

Γ (17/6)

Γ (2/3)
=

55

36

√
3

22/3
√
π

Γ
(

2

3

)
.

Tatarskii and Ostashev’s equation (a) follows immediately upon substitution of this result
into equation (b).
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To find the limiting forms of the correlations for small r/`, the following
expansion of the Bessel functions for small arguments can be used:

Kν (ξ) ' Γ (ν)
2

(
ξ

2

)−ν
− Γ (1− ν)

2ν

(
ξ

2

)ν
. (123)

Note that f (r), g (r), and h (r) in the von Kármán model all have the form

ϕ (r) =
2

Γ (1/3)

(
r

2`

)1/3 [
K1/3

(
r

`

)
− a

(
r

`

)
K2/3

(
r

`

)]
, (124)

where a = 0 for f (r), a = 1/2 for g (r), and a = 1/3 for h (r). For the inertial
subrange, then, the general result is

ϕ (r) = 1− (3 + 2a)
Γ (2/3)
Γ (1/3)

(
r

2`

)2/3

. (125)

6.2 Structure Functions and Parameters

The structure functions are found by substitution of equation (125) into
equations (49), (51), and (52). The results are

D (r) =
22Γ (2/3)
3Γ (1/3)

(
r

2`

)2/3

, (126)

D‖ (r) =
6σ2Γ (2/3)

Γ (1/3)

(
r

2`

)2/3

, and (127)

D⊥ (r) =
8σ2Γ (2/3)

Γ (1/3)

(
r

2`

)2/3

. (128)

Using equations (10) and (50), we have more generally for the velocity
fluctuations

Dαα (r) =
2σ2Γ (2/3)

Γ (1/3)

(
r

2`

)2/3
(

4− r2
α

r2

)
. (129)

The structure-function parameter is defined as the ratioD(r)/r2/3 for small
r. Hence the structure-function parameter for scalars is

C2
s =

22σ2Γ (2/3)
3Γ (1/3)

(
1
2`

)2/3

' 2.335σ2`−2/3, (130)

and for vectors

C2
v =

6σ2Γ (2/3)
Γ (1/3)

(
1
2`

)2/3

' 1.911σ2`−2/3. (131)
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Therefore equation (129) can be rewritten as

Dαα (r) =
C2
v

3
r2/3

(
4− cos2 α

)
= C2

vr
2/3
[
1 + (1/3) sin2 α

]
, (132)

where cosα = rα/r.

For small separations, the scalar 2D correlation function is

b (ρ) =
2σ2`Γ (5/6)
3
√
πΓ (1/3)

[
1− 11

5
Γ (1/6)
Γ (5/6)

(
ρ

2`

)5/3
]
. (133)

The 2D structure function is hence

d (ρ) = 2 [b (0)− b (ρ)] =
44
15
σ2`Γ (1/6)√
πΓ (1/3)

(
ρ

2`

)5/3

' 2.143σ2`−2/3ρ5/3. (134)

For vectors,

d‖ (ρ) =
3
2
d (ρ) ' 3.214σ2`−2/3ρ5/3. (135)

In terms of the structure-function parameters, we can write

d (ρ) =
1
5

Γ (1/6)√
πΓ (2/3)

C2
sρ

5/3 ' 0.4638C2
sρ

5/3, and (136)

d‖ (ρ) =
11
30

Γ (1/6)√
πΓ (2/3)

C2
vρ

5/3 ' 0.8504C2
vρ

5/3. (137)

Equation (136) is plotted in figure 2 (p 26).
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7. HGW Model

The HGW model is essentially a von Kármán model, modified to account
for the blocking effect of the ground on the turbulence. As a result of ground
blocking, the vertical velocity of an eddy must vanish at ground level. This
causes the turbulent velocity statistics to be statistically inhomogeneous
in the vertical direction. Since I describe the HGW model in detail else-
where (Wilson, 1997b), here I only summarize the main results, and show
how they can be used for wave scattering calculations and random field
synthesis.

In previous sections, orientation of the coordinate system was arbitrary.
Because the HGW model is anisotropic, we must be specific in this section
by using x3 (that is, z) for the vertical axis.

The basis of the HGW model is the following equation for the 2D cross
spectrum of the turbulence:

φij
(
κ1, κ2; z, z′

)
= φ

(H)
ij

(
κ1, κ2;

∣∣z′ − z∣∣) (138)

+ e−κhz
′
mj (κ1, κ2)φ(H)∗

3i (κ1, κ2; z)

+ e−κhzm∗i (κ1, κ2)φ(H)
3j

(
κ1, κ2; z′

)
+ e−κh(z+z′)m∗i (κ1, κ2)mj (κ1, κ2)φ(H)

33 (κ1, κ2; 0) ,

where

mj (κ1, κ2) =

 iκj/κh, j = 1 or j = 2

−1, j = 3
. (139)

The superscripted “(H)” in the equations above means the homogeneous
spectrum: that is, the spectrum that would be measured if the boundary
(ground) were not present. When the third argument of φ(H)

ij (κ1, κ2; r3) is
zero, the 2D cross spectrum becomes the ordinary 2D spectrum, so that
equations (109) to (112) can be used. For nonzero argument, the following
results from Wilson (1997b) are needed in addition to equations (114) and
(115):

φ
(H)
12 (κ1, κ2; r3) = − 2σ2κ1κ2`

4 (ζh/2)7/3

πΓ (1/3)
(
1 + κ2

h`
2
)7/3K7/3 (ζh) , and (140)

φ
(H)
13 (κ1, κ2; r3) = − 2iσ2κ1`

3 (ζh/2)7/3

πΓ (1/3)
(
1 + κ2

h`
2
)11/6

K4/3 (ζh) . (141)
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The main difficulty in applying the HGW model is that equation (138) can-
not be Fourier transformed analytically. One is therefore forced to use nu-
merical methods.

7.1 1D Cross Spectra

The 1D cross spectra must be calculated numerically. They are very useful
for synthesizing turbulence in a vertical plane. As an example, suppose
we wish to synthesize the u1 velocity component in the (x1, x3)-plane. The
EOFs required by the GRPM are the eigenfunctions of the 3D correlation
function R11 (r1, 0, z, z′). We can calculate this function by taking the 2D
inverse Fourier transform of equation (138) with i = j = 1, and evaluate
it at r2 = 0. The next step is to Fourier transform the correlation function
with respect to the homogeneous coordinates, in this case r1. The resulting
function is the 1D cross spectrum Θ11 (κ1; 0, z, z′). It is easily shown that

Θ11
(
κ1; 0, z, z′

)
=

1
2π

∫ ∞
−∞

R11
(
r1, 0, z, z′

)
exp (−iκ1r1) dr1

=
∫ ∞
−∞

φ11
(
κ1, κ2; z, z′

)
dκ2. (142)

The second form is more useful, since it allows Θ11 to be determined
from a simple 1D integration of φ11, which is known from equation (138).
Hence for synthesis in a vertical plane, the 1D cross spectral function
Θ11 (κ1; 0, z, z′) plays the role of R̂ in the procedure described in section 3.2.
Furthermore, k → κ1, and ξ → z. Once these identifications are made, it is
straightforward to apply the GRPM.

7.2 2D Correlation Function

For homogeneous turbulence, the 2D correlation function can be deter-
mined from either equation (20) or (21). Because the 3D spectrum in equa-
tion (20) is undefined in inhomogeneous turbulence, however, equation
(21) is the only definition directly compatible with the HGW model.

Let us consider the calculation of b‖, for which the integration and velocity
components are aligned. Using the x1-axis for the direction of propagation,
we have

b‖
(
r2, z, z

′) =
1

2π

∫ ∞
−∞

R11
(
r1, r2, z, z

′) dr1. (143)

Equivalently, from the Fourier transform definition, equation (4), one has

b‖
(
r2, z, z

′) =
∫ ∞
−∞

φ11
(
0, κ2; z, z′

)
exp (iκ2r2) dκ2. (144)
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Because m1 (0, κ2) = 0, only the first term in equation (138), represent-
ing the contribution to the spectrum that is unaffected by the ground, is
nonzero. Therefore the 2D correlation function for the HGW model is the
same as the von Kármán model, equation (108).

7.3 2D and 3D Spectra

It is a simple matter to obtain the 2D spectrum in a horizontal plane for the
HGW model: one just sets z = z′ in equation (138). On the other hand, the
2D spectra in vertical planes and the 3D spectrum are undefined because
of vertical inhomogeneity.
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8. Mann Model

The Mann model is the result of applying rapid distortion theory to a con-
stant shear layer. The main idea underlying rapid distortion theory is that
the shear distortions to an eddy occurring over short time intervals can be
modeled by linearized Navier-Stokes equations. Although a full discussion
of rapid distortion theory and Mann’s model is beyond the scope of this re-
port, the relevant equations are summarized here.

Mann’s equations for the 3D autospectra in a uniform (constant gradient)
shear layer are

Φ11 (k) =
E (k0)
4πk4

0

[
k2

0 − k2
1 − 2k1k30ζ1 +

(
k2

1 + k2
2

)
ζ2

1

]
, (145)

Φ22 (k) =
E (k0)
4πk4

0

[
k2

0 − k2
2 − 2k2k30ζ2 +

(
k2

1 + k2
2

)
ζ2

2

]
, and (146)

Φ33 (k) =
E (k0)
4πk4

(
k2

1 + k2
2

)
. (147)

In the equations above, E (k0) is the initial (before the onset of shear dis-
tortion) energy spectrum. The isotropic vector von Kármán energy spec-
trum is used for E (k0). The initial wavenumber is k0 = (k1, k2, k30), where
k30 = k3−βk1, and β is called the nondimensional eddy lifetime. It is given by
(Mann, 1994, Wilson, 1998)

β =
√

3Γ
k`

[
B1/(1+k2`2)

(
1
3
,
5
2

)]−1/2

. (148)

The ζi are given by the equations

ζ1 = C1 −
k2

k1
C2, ζ2 =

k2

k1
C1 + C2, (149)

where

C1 =
βk2

1

(
k2

0 − 2k2
30 + βk1k30

)
k2
(
k2

1 + k2
2

) , and (150)

C2 =
k2k

2
0(

k2
1 + k2

2

)3/2 arctan

[
βk1

(
k2

1 + k2
2

)1/2
k2

0 − βk30k1

]
. (151)
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9. Examples of Synthesized Random Turbulence

I provide here some examples of synthesized turbulence fields, generated
by the various turbulence models discussed in previous sections.

9.1 Large-Scale (Buoyantly Driven) Turbulence

The turbulence parameters chosen for this set of examples are intended
to be characteristic of the large eddies generated by buoyancy instabili-
ties, such as occur when the sun heats the ground during the day. Specif-
ically, the parameter values for the HGW model are those suggested by
Wilson (1997b): σ2 = 0.35w2

∗, where w2
∗ is called the mixed-layer velocity scale

(Deardorff, 1970a), and ` = 0.23zi, where zi is the boundary-layer inversion
height. Besides the HGW model, the models used to make the synthesized
fields for this case are the homogeneous von Kármán (sect. 5) and Gaus-
sian (sect. 4) models. The parameters used in the von Kármán model are
the same as in the HGW model. For the Gaussian model, σ2 = 0.35w2

∗ and
L = 2Γ (5/6) /Γ (1/3) ` = 0.194zi were used. The reason for choosing this
value of L is that it results in matching integral length scales for the von
Kármán and Gaussian models, as is evident from a comparison of equa-
tions (83) and (104).

Figures 3 to 5 show the Gaussian, von Kármán, and HGW models, respec-
tively. All the figures depict vertical planes. The field synthesized is the
in-plane horizontal velocity component. The resolution of the simulated
fields is 150 grid points in the vertical direction and 200 in the horizontal.
The Gaussian field was computed in just a few minutes on a Sun Ultra-
Sparc workstation; the von Kármán field required several hours, mainly
because of the Bessel function evaluations; and the HGW field required
several days, because of the numerical integration to determine the 1D
cross spectrum from the 2D cross spectrum. In general, most of the com-
putation time involves determining the 1D cross spectra; the eigenanalysis
to determine the EOFs is fast, as is application of the GRPM. Because all
three models have axial symmetry, the azimuthal orientation of the vertical
plane relative to the wind direction plays no role. The 1D cross spectra (eq
(86) and (105) with r2 = 0, and eq (142)) were used to synthesize the fields.

39



Figure 3. Synthesized
turbulent velocity field for
buoyantly driven
turbulence, generated by a
homogeneous Gaussian
model.
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Figure 4. Synthesized
turbulent velocity field for
buoyantly driven
turbulence, generated by a
homogeneous von Kármán
model.
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Figure 5. Synthesized
turbulent velocity field for
buoyantly driven
turbulence, generated by
Hunt/Graham/Wilson
model.
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The Gaussian model produces a much more smoothly varying field than
the HGW and von Kármán models. Such smoothness is unrealistic for high-
Reynolds-number turbulence such as the atmosphere. The HGW and von
Kármán models are much more realistic, and yield quite similar results.
There is a slight enhancement of the velocity fluctuations near the ground
in the HGW model, which results from the ground blocking effect. (The dif-
ferences between the HGW and von Kármán models are much more dra-
matic for the vertical velocity component. The horizontal velocity was plot-
ted here, since it is more important for horizontal acoustic propagation.)

9.2 Small-Scale (Shear-Driven) Turbulence

The parameters values chosen for this set of examples are characteristic
of turbulence generated by surface-layer wind shear. The integral length
scale for this type of turbulence is proportional to the height. Five example
synthesized turbulence fields are shown in figures 6 to 10. As before, the
synthesized field is the in-plane horizontal velocity component. The reso-
lution of the simulated fields is 200 grid points in the vertical direction and
300 in the horizontal.

The first of the synthesized fields (fig. 6) was created with an inhomoge-
neous Gaussian model with σ2 = 2.97u2

∗, where u∗ is called the friction
velocity, and L = 1.34z, where z is the height. The second synthesized field
(fig. 7) is an inhomogeneous von Kármán model, with σ2 = 2.97u2

∗ and
` = 1.60z. (The parameter values for both models are the ones derived for a
shear-driven surface layer by Wilson, 1998.) The inhomogeneous Gaussian
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Figure 6. Synthesized
turbulent velocity field for
shear-driven turbulence,
generated by an
inhomogeneous Gaussian
model with
height-dependent length
scale.
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Figure 7. Synthesized
turbulent velocity field for
shear-driven turbulence,
generated by an
inhomogeneous von
Kármán model with
height-dependent length
scale.
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and von Kármán fields both clearly show small structures near the surface
that gradually merge into larger ones away from the surface. However, the
Gaussian model produces an unrealistically smooth field.
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Figure 8 is a second example of a Gaussian field, differing from figure 6
in that the length scale has been assigned a constant (height-independent)
value of L = 1.1 m. Although this value for L is rather unrealistic, it has
often been used previously for acoustic wave scattering studies (Daigle et
al., 1983, Daigle et al., 1986, Gilbert et al., 1990, Chevret et al., 1996). The re-
sulting homogeneous field lacks the realistic merging of smaller structures
into larger ones that was evident in figures 6 and 7.

The final two synthesized fields I consider, figures 9 and 10, were created
with the Mann model. For reasons discussed in a previous report (Wilson,
1998), the parameter values used in the Mann model are Γ = 3.53, σ2 =
1.88u2

∗, and ` = 0.805z. Recall from section 8 that the spectra in the Mann
model depend on the orientation relative to the wind. Figure 9 shows an
along-wind vertical plane, while figure 10 is a crosswind vertical plane.
Qualitatively, both fields are quite similar to the von Kármán model (fig.
7). Although it is difficult to discern visually, there is a statistical tendency
for larger structures in the along-wind direction of the Mann model than
in the von Kármán model. Some decrease of the variance in the crosswind
direction is visually evident. It is interesting that the computations for the
Mann model required about one day, which is significantly less than the
HGW model, even though both models require numerical integrations. The
Mann model ends up being faster because it is based mostly on simple
algebraic functions, whereas the HGW model contains Bessel functions.

Figure 8. Synthesized
turbulent velocity field for
shear-driven turbulence,
generated by a
homogeneous Gaussian
model with a constant
(height-independent)
length scale.
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Figure 9. Synthesized
turbulent velocity field for
shear-driven turbulence,
generated by Mann
rapid-distortion model.
Shown is a vertical plane
parallel to wind;
synthesized field is
horizontal wind
fluctuation parallel to
mean wind.
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Figure 10. Synthesized
turbulent velocity field for
shear-driven turbulence,
generated by Mann’s
rapid-distortion model.
Shown is a vertical plane
perpendicular to wind;
synthesized field is
horizontal wind
fluctuation perpendicular
to mean wind.
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10. Concluding Remarks

A comprehensive set of equations for second-order statistical models of
turbulence is derived in this report. Future research will involve application
of these results to wave propagation calculations.

The generalized random-phase method (GRPM) described in this report for
synthesizing inhomogeneous random fields provides much more realistic
turbulence fields for use in wave propagation calculations than do previous
methods. The method could also be applied to turbulent transport and dif-
fusion calculations. When GRPM is used with the HGW and Mann turbu-
lence models, the resulting synthesized fields have second-order statistics
very close to the known properties of atmospheric turbulence.
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Acronyms

1D (2D, 3D) one- (two-, three-) dimensional

CBL convective boundary layer

EOF empirical orthogonal function

GRPM generalized random-phase method

HGW Hunt/Graham/Wilson model

RPM random-phase method
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